a2 United States Patent

Benhase et al.

US009471496B2

US 9,471,496 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

DEMOTING TRACKS FROM A FIRST
CACHE TO A SECOND CACHE BY USING A
STRIDE NUMBER ORDERING OF STRIDES
IN THE SECOND CACHE TO
CONSOLIDATE STRIDES IN THE SECOND
CACHE

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Michael T. Benhase, Tucson, AZ (US);
Lokesh M. Gupta, Tucson, AZ (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 116 days.

Appl. No.: 14/465,769
Filed: Aug. 21, 2014
Prior Publication Data
US 2014/0365718 Al Dec. 11, 2014
Related U.S. Application Data

Continuation of application No. 13/779,412, filed on
Feb. 27, 2013, now Pat. No. 8,825,956, which is a
continuation of application No. 13/352,236, filed on
Jan. 17, 2012, now Pat. No. 8,825,953.

Inventors:

Assignee:

Notice:

Int. CL.

GOGF 12/00 (2006.01)

GOG6F 13/00 (2006.01)
(Continued)

U.S. CL

CPC ... GOG6F 12/0833 (2013.01); GOGF 3/0619
(2013.01); GO6F 3/0667 (2013.01);
(Continued)

Field of Classification Search

CPC GO6F 12/0246; GO6F 12/0833; GOG6F

12/122

USPC ooiivevieviecneercicenenen 711/118, 119, 122
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,464,713 A
5,860,090 A

8/1984 Benhase et al.
1/1999 Clark

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN
WO

1967495
1967507
2011042428

5/2007
5/2007
4/2011

OTHER PUBLICATIONS

Response dated Jul. 14, 2014, pp. 13, to Final Office Action dated
Apr. 7, 2014, pp. 41, U.S. Appl. No. 13/352,230.

(Continued)

Primary Examiner — Charles Rones

Assistant Examiner — Sidney Li

(74) Attorney, Agent, or Firm — David W. Victor; Konrad
Raynes Davda & Victor LLP

(57) ABSTRACT

Information on strides configured in the second cache
includes information indicating a number of valid tracks in
the strides, wherein a stride has at least one of valid tracks
and free tracks not including valid data. A determination is
made of tracks to demote from the first cache. A first stride
is formed including the determined tracks to demote. The
tracks from the first stride are added to a second stride in the
second cache that has no valid tracks. A target stride in the
second cache is selected based on a stride most recently used
to consolidate strides from at least two strides into one
stride. Data from the valid tracks is copied from at least two
source strides in the second cache to the target stride.

22 Claims, 10 Drawing Sheets

Storage Cantroller

Processor Complex 12
20

Memory

2 2
Storage Cache
Manager Manager

36

Storage RAID
Configuration

~%

28 3

First Cache
Managament

Second Cache
Management

Second
Cache RAID

14

First Cache

18

Second Cache
LSA 32

Storage

o

10

US 9,471,496 B2
Page 2

(51) Int. CL
GOGF 13/28 (2006.01)
GOGF 12/08 (2016.01)
GOGF 12/12 (2016.01)
GOGF 12/02 (2006.01)
GOGF 3/06 (2006.01)
(52) US.CL
CPC GOG6F3/0689 (2013.01); GOG6F 12/0246

(2013.01); GO6F 12/122 (2013.01); GO6F
12/123 (2013.01); GO6F 12/128 (2013.01);
GO6F 12/0871 (2013.01); GOGF 12/0897
(2013.01); GOGF 2212/225 (2013.01); GO6F
2212/69 (2013.01); GO6F 2212/7209 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,860,091 A * 1/1999 DeKoning GOG6F 3/0626
711/113
6,321,240 B1 11/2001 Chilimbi et al.
6,785,771 B2 8/2004 Ash et al.
7,107,385 B2 9/2006 Rajan et al.
7,444,478 B2 10/2008 LaFrese et al.
7,562,203 B2 7/2009 Scott et al.
7,650,341 Bl 1/2010 Oratovsky et al.
7,669,022 B2 2/2010 Maruyama et al.
7,698,501 Bl 4/2010 Corbett et al.
7,702,870 B2 4/2010 English et al.
7,721,043 B2 5/2010 Gill et al.
7,725,651 B2 5/2010 Saito
7,769,960 B2 8/2010 LaFrese et al.
7,930,325 B2 4/2011 Siegwart et al.
2001/0029574 Al 10/2001 Razdan
2002/0166022 Al* 11/2002 Suzuki GOG6F 12/0866
711/103
2002/0199070 Al 12/2002 Chaudhry
2003/0028695 Al 2/2003 Burns et al.
2003/0070042 Al 4/2003 Byrd et al.
2003/0105928 Al* 6/2003 Ashcccovveenn. GOG6F 12/0804
711/136
2004/0068612 Al 4/2004 Stolowitz
2004/0098541 Al 5/2004 Megiddo et al.
2005/0073884 Al 4/2005 Gonzalez et al.
2005/0144360 Al 6/2005 Bennett et al.
2005/0257083 Al* 11/2005 Cousins GO6F 17/30067
714/6.2

2006/0106891 Al 5/2006 Mabhar et al.

2006/0155934 Al 7/2006 Rajamony et al.

2007/0106707 Al* 5/2007 Yamato GOGF 12/0246

2007/0118695 Al 5/2007 Lowe et al.

2009/0210620 Al 8/2009 Jibbe et al.

2009/0216954 Al 8/2009 Benhase et al.

2009/0271412 Al 10/2009 Lacapra et al.

2009/0271418 Al 10/2009 Vaghani et al.

2010/0082774 Al 4/2010 Pitts

2010/0166022 Al 7/2010 Cho

2010/0191907 Al* 7/2010 Ish ... GOGF 11/1096
711114

2010/0293420 Al

2011/0087837 Al

2011/0191523 Al

2011/0202732 Al

2013/0111106 Al

2013/0111134 Al

11/2010 Kapil et al.
4/2011 Blinick et al.
8/2011 Caulkins
8/2011 Montgomery
5/2013 Benhase et al.
5/2013 Benhase et al.

OTHER PUBLICATIONS

Notice of Allowance dated Oct. 6, 2014, pp. 21, for U.S. Appl. No.
13/352,230.
Notice of Allowance dated Sep. 30,2014, pp. 14, for U.S. Appl. No.
13/464,668.
Office Action dated Nov. 8, 2013, pp. 65 for U.S. Appl. No.
13/352,230.

Response dated Feb. 7, 2014, pp. 13, to Office Action dated Nov. 8,
2013, pp. 65 for U.S. Appl. No. 13/352,230.

Final Office Action dated Mar. 24, 2014, pp. 37, for U.S. Appl. No.
13/352,230.

Office Action dated Nov. 8, 2013, pp. 65 for U.S. Appl. No.
13/464,668.

Response dated Feb. 7, 2014, pp. 9, to Office Action dated Nov. 8,
2013, pp. 65 for U.S. Appl. No. 13/464,668.

Final Office Action dated Mar. 24, 2014, pp. 36 for U.S. Appl. No.
13/464,668.

Office Action dated Aug. 30, 2013, pp. 55, for U.S. Appl. No.
13/352,224, filed Jan. 17, 2012.

Response dated Dec. 2, 2013, p. 13 to Office Action dated Aug. 30,
2013, pp. 55, for U.S. Appl. No. 13/352,224, filed Jan. 17, 2012, by
inventors M. et al.

Notice of Allowance dated Apr. 29, 2014, pp. 55, for U.S. Appl. No.
13/352,224, filed Jan. 17, 2012.

Office Action dated Sep. 5, 2013, pp. 33, for U.S. Appl. No.
13/779,309, filed Feb. 27, 2013.

Response dated Dec. 5, 2013, pp. 9, to Office Action dated Sep. 9,
2013, pp. 33, for U.S. Appl. No. 13/779,309, filed Feb. 27, 2013.
Notice of Allowance dated Apr. 30, 2014, pp. 50, for U.S. Appl. No.
13/779,309, filed Feb. 27, 2013.

Office Action dated Oct. 3, 2013, pp. 37, for U.S. Appl. No.
13/352,236, filed Jan. 17, 2012.

Response dated Jan. 3, 2014, pp. 1, to Office Action dated Oct. 3,
2013, pp. 37, for U.S. Appl. No. 13/352,236, filed Jan. 17, 2012.
Office Action dated Jan. 10, 2014, pp. 67, for U.S. Appl. No.
13/352,236, filed Jan. 17, 2012.

Response dated Apr. 8, 2014, pp. 10, to Office Action dated Jan. 10,
2014, pp. 67, for U.S. Appl. No. 13/352,236, filed Jan. 17, 2012.
Notice of Allowance dated Apr. 30, 2014, pp. 29, for U.S. Appl. No.
13/352,236, filed Jan. 17, 2012.

U.S. Appl. No. 13/779,412, filed Feb. 27, 2013, by inventors M.
Benhase et al.

Preliminary Remarks filed Feb. 27, 2013, pp. 2, for U.S. Appl. No.
13/779,412, filed Feb. 27, 2013, by inventors M. Benhase et al.
Office Action dated Oct. 10, 2013, pp. 45, for U.S. Appl. No.
13/779,412, filed Feb. 27, 2013.

Response dated Jan. 10, 2014, pp. 9, for U.S. Appl. No. 13/779,412,
filed Feb. 27, 2013.

Notice of Allowance dated Apr. 22, 2014, pp. 45, U.S. Appl. No.
13/779,412, filed Feb. 27, 2013.

Response dated Jul. 14, 2014, pp. 10, to Final Office Action dated
Apr. 7, 2014, pp. 41, for U.S. Appl. No. 13/464,668.

Office Action dated Oct. 18, 2013, pp. 54, for U.S. Appl. No.
13/352,239, filed Jan. 17, 2012.

Response dated Jan. 21, 2014, pp. 13, to Office Action dated Oct. 18,
2013, pp. 54, for U.S. Appl. No. 13/352,239, filed Jan. 17, 2012.
Final Office Action dated Apr. 7, 2014, pp. 41, for U.S. Appl. No.
13/352,239, filed Jan. 17, 2012.

Response dated Jul. 7, 2014, pp. 13, to Final Office Action dated
Apr. 7, 2014, pp. 41, for U.S. Appl. No. 13/352,239, filed Jan. 17,
2012.

Office Action dated Oct. 25, 2013, pp. 49, for U.S. Appl. No.
13/779,439, filed Feb. 27, 2013.

Response dated Jan. 21, 2014, pp. 10, to Office Action dated Oct. 25,
2013, pp. 49, for U.S. Appl. No. 13/779,439, filed Feb. 27, 2013.
Final Office Action dated Apr. 4, 2014, pp. 38, for U.S. Appl. No.
13/779,439, filed Feb. 27, 2013.

Response dated Jul. 7, 2014, pp. 10, to Final Office Action dated
Apr. 4, 2014, pp. 38, for U.S. Appl. No. 13/779,439, filed Feb. 27,
2013.

U.S. Appl. No. 13/352,230, filed Jan. 17, 2012, entitled “Populating
a First Stride of Tracks from a First Cache to Write to a Second
Stride in a Second Cache”, by inventors K. Ash, M. Benhase, L.
Gupta, M. Kalos, K. Nielsen.

U.S. Appl. No. 13/352,224, filed Jan. 17, 2012, entitled “Demoting
Tracks from a First Cache to a Second Cache by Using an Occu-
pancy of Valid Tracks in Strides in the Second Cache to Consolidate
Strides in the Second Cache”, by inventors M. Benhase,and L.
Gupta.

US 9,471,496 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/352,239, filed Jan. 17, 2012, entitled “Demoting
Partial Tracks From a First Cache to a Second Cache”, by inventeors
K. Ash, M. Benhase,and L. Gupta.

U.S. Appl. No. 13/133,974, filed May 23, 2011, entitled “Cache
Management of Tracks in a First Cache and a Second Cache for
Storage”, by inventors M.Benhase, et al.

U.S. Appl. No. 13/113,931, filed May 23, 2011, entitled “Populating
Strides of Tracks to Demote From a First Cache to a Second Cache”,
by inventors M.Benhase, et al.

U.S. Appl. No. 13/113,937, filed May 23, 2011, entitled “Managing
Unmodified Tracks Maintained in Both a First Cache and a Second
Cache”, by inventors K. Ash, et al.

U.S. Appl. No. 13/113,944, filed May 23, 2011, entitled “Caching
Data in a Storage System Having Multiple Caches Including
Non-Volatile Storage Cache in a Sequential Access Storage
Device”, by inventors M.Behase, et al.

U.S. Appl. No. 13/113,949, filed May 23, 2011, entitled “Using an
Attribute of a Write Request to Determine Where to Cache Data in
a Storage System Having Multiple Caches Including Non-Volatile
Storage Cache in a Sqential Access Storage Device”, by inventors
M.Benhase, et al.

U.S. Appl. No. 13/113,953, filed May 23, 2011, entitled “Handling
High Priroity Requests in a Sequential Access Storage Device
Having a Non-Volatile Storage Cache”, by inventors M. Benhase, et
al.

U.S. Appl. No. 13/113,958, filed May 23, 2011, entitled “Handling
High Priroity Requests in a Sequential Access Storage Device
Having a Non-Volatile Storage Cache”, by inventors M. Benhase, et
al.

“Check Point for a Two Stage Store”, IBM Corp., [IP.com Document
No. IPCOM000089366D,TDB Oct. 1977, pp. 1955-1958, Oct. 1,
1977, pp. 1-5.

“Serial ATA Native Command Queuing” joint WhitePaper by Intel
Corporation and Seagate Technology, Jul. 2003, pp. 1-12.
“Multiple Command Control and Reordering”, [online] [retrieved
May 14, 2011]pp. 1-2 http://www.pcguide.com/ref/hdd/op/
logicMultiple-c.html.

“Superparamagnetic Effect on Hard Disk Drive’”, [online]
[retrieved May 16, 2011], pp. 1-2, http://www.dataclinic.co.uk/
hard-disk-superparamagnetic-effect html.

“Superparamagnetism”, Wikipedia, [online] [retrieved May 19,
2011], pp- 1-5, http://en. wikipedia.org/w/index/
php?title=Superparamagnetism&printable

“Seagate’s Terabyte Platters Make it the Densest of the Lot”, The
Register, [online] [retrieved May 19, 2011], pp. 1-2, http://www.
theregisterco.uk/2011/05/03seagate__terabyte_ platter/
Hitachi Demos 230 Gb Per Square Inch Data Density on Perpen-
dicular Re . . . , [online] [retrieved May 19, 2011], pp. 1-9,
http://www.physorg.com/news3588 html.

“Hard Disk Drive”, Wikipedia, [online] [retrieved May 19, 2011],
pp. 1-23, http://en.wikipedia.org/w/index.php?title=hard_ disk _
drive&printable=yes.

Preliminary Amendment 1, filed Jul. 12, 2011, 16 pp., for U.S. Appl.
No. 13/113,931, filed May 23, 2011 by M.T. Benhase et al.
Preliminary Amendment 2, filed May 7, 2012, 8 pp., for U.S. Appl.
No. 13/113,931, filed May 23, 2011 by M.T. Benhase et al.

U.S. Appl. No. 13/465,717, filed May 7, 2012, by inventors
M.Benhase, et al.

Preliminary Amendment, pp. 20, filed May 7, 2012, for U.S. Appl.
No. 13/465,717, by M. T. Benhase et al.

Preliminary Amendment filed May 4, 2012, 8 pp, for U.S. Appl. No.
13/352,230, by inventors K. Ash, et al.

U.S. Appl. No. 13/464,668, filed May 4, 2012, by inventors K. Ash,
et al.

Preliminary Amendment filed May 4, 2012, 6 pp., for U.S. Appl.
No. 13/464,668, by inventors K. Ash, et al.

U.S. Appl. No. 13/352,224, filed Jan. 17, 2012, by inventors M. et
al.

Preliminary Amendment filed Feb. 27, 2013, pp. 9, for U.S. Appl.
No. 13/352,224, filed Jan. 17, 2012, by inventors M. et al.

U.S. Appl. No. 13/779,309, filed Feb. 27, 2013, by inventors M. et
al.

Preliminary Remarks filed Feb. 27, 2013, pp. 2, for U.S. Appl. No.
13/779,309, filed Feb. 27, 2013, by inventors M. et al.

U.S. Appl. No. 13/352,236, filed Jan. 17, 2012, by inventors M.
Benhase et al.

Preliminary Amendment filed Feb. 27, 2013, pp. 8, for U.S. Appl.
No. 13/352,236, filed Jan. 17, 2012, by inventors M. Benhase et al.
U.S. Appl. No. 13/352,239, filed Jan. 17, 2012, by inventors K. Ash,
et al.

Preliminary Amendment filed Feb. 27, 2013, pp. 8, for U.S. Appl.
No. 13/352,239, filed Jan. 17, 2012, by inventors K. Ash, et al.
U.S. Appl. No. 13/779,439, filed Feb. 27, 2013, by inventors K. Ash,
et al.

Preliminary Remarks filed Feb. 27, 2013, pp. 2, for U.S. Appl. No.
13/779,439, filed Feb. 27, 2013, by inventors K. Ash, et al.

PCT Search Report & Written Opinion dated May 2, 2013 for
PCT/IB2012/057140 filed Dec. 10, 2012.

English Translation of CN1967495 filed May 23, 2007 by IBM
Corp.

English Translation of CN1967507 filed May 23, 2007 by IBM
Corp.

UK Combined Search Report & Examination Report dated Jul. 19,
2013 for GB1300444.5 filed Jan. 10, 2013.

UK Response dated Dec. 9, 2013 to Official Letter received Jul. 19,
2013 for GB1300444.5 filed Jan. 10, 2013.

Preliminary Amendment 2, filed May 7, 2012, 8 pp., for U.S. Appl.
No. 13/113,931, filed on May 23, 2011.

Office Action dated Jul. 8, 2013, pp. 31, for U.S. Appl. No.
13/113,931, filed May 23, 2011.

Response dated Oct. 8, 2013, pp. 12, to Office Action dated Jul. 8,
2013, pp. 31, for U.S. Appl. No. 13/113,931, filed May 23, 2011.
Office Action dated Dec. 24, 2013, pp. 38, for U.S. Appl. No.
13/113,931, filed May 23, 2011 by M.T. Benhase et al.

Response dated Mar. 24, 2014, pp. 10, to Office Action dated Dec.
24,2013, pp. 38, for U.S. Appl. No. 13/113,931, filed May 23, 2011.
Notice of Allowance dated Apr. 17, 2014, pp. 18, for U.S. Appl. No.
13/113,931, filed May 23, 2011.

Response dated Oct. 8, 2013 to Office Action dated Jul. 9, 2013, pp.
28, for U.S. Appl. No. 13/465,717.

Notice of Allowance dated Jan. 28, 2014, pp. 14, for U.S. Appl. No.
13/465,717.

Office Action dated Jul. 9, 2013, pp. 28, for U.S. Appl. No.
13/465,717.

Notice of Allowance received Dec. 23, 2014, pp. 31, for U.S. Appl.
No. 13/352,239, filed Jan. 17, 2012.

Notice of Allowance dated Dec. 26, 2014, pp. 20, for U.S. Appl. No.
13/779,439, filed Feb. 27, 2013.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 10 US 9,471,496 B2
22 b 2N
Host Host Host
6
4 >
\
Storage Controller
Processor Complex |— 12
20
Memory 36
22 2 -
Storage Cache (S;torfage R{L_\ID
Manager Manager onfiguration
26 28 34
First Cache Second Cache Second
Management Management Cache RAID
Information Information Configuration
18
14 L
- Second Cache
First Cache 1SA 32
10
Storage
FIG. 1 | s

U.S. Patent Oct. 18, 2016 Sheet 2 of 10 US 9,471,496 B2

26
\
First Cache Management Information
50 U ﬂ 5d4 96
nmodifie Modified
Track Index Seq. LRU LRU
92 98 60
Control Block Unmodified Stride
Directory Non-Seq. LRU Info
FIG. 2
28
\
Second Cache Management Information
10 — 14
Unmodified
Track Index LRU
12 18
Control Block Stride
Directory Info
80 82 84 86
[[[[
Last Stride MRU Stride Free Sf[;?ge
Number Number Strides Threshold

FIG. 3

U.S. Patent

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

Oct. 18, 2016

Sheet 3 of 10

US 9,471,496 B2

100
102 104 106 108 110
[/ [/ i
: Modified/ Sequential/
Control | First Cache i : Demote
Block ID Location Unmodified | Non-sequential Status
Info Info
First Cache Control Block 120
122 124 126 128 130
[/ [[[
Modified/
Control LSA h : : ,
Black ID Location Unrrllrc])golﬂed Valid/Invalid Stride
Second Cache Control Block
132 134
/ /
Stride ID Tracks
Stride Info
34
140 142 144 146 /
/ / / /
Parity Unmodified
RAID Level | Data Disks (m) | pisgs (n) Stride Parity
Optional Flag
Second Cache RAID Configuration 3
150 152 154
[/ /
RAID Level | Data Disks () Di';?(rs“%’p)

Storage System RAID Configuration

U.S. Patent Oct. 18, 2016 Sheet 4 of 10 US 9,471,496 B2

Initiate operation to demote unmodified 200
non-sequential tracks from the first cache.
v

Indicating the demote status of the unmodified | _ 549
non-sequential tracks to demote as "ready".

v

Use second cache RAID configuration

information to form a first stride of | _ 994

tracks from the first cache to promote
to a stride in the second cache.

v

Process unmodified non-sequential LRU

list to determine number of unmodified | __ 5q6

non-sequential tracks having a demote
status of ready to fill the first stride.

(End.)

A

determined number of
unmodified non-sequential
tracks sufficient to form a
first stride?

Populate the first stride of unmodified non-sequential

tracks having a demote status of ready (e.g., starting 910

from the LRU end of the unmodified non-sequential
LRU list populate with enough tracks for the data disks).

T ~- 212
If RAID configuration has parity disks, calculate parity for
the unmodified non-sequential tracks included in the stride > Go_toFt;EchZZO
and include parity (for the p parity disks) in the stride. n F4. 5b.

FIG. 9A

U.S. Patent Oct. 18, 2016 Sheet 5 of 10 US 9,471,496 B2

222
[

Yes o Setitofirst |,
stride number.

number last stride
number?

Set 7 to the next consecutive stride number
from the MRU stride number. 230

/
' 226 Increment / to next stride
number in ordering.

stride / have all
free tracks?

232
[

Select stride / as the second stride for
promotion from the first cache.

stride / last stride
number?

A 4

Write the tracks from the first stride tothe |_ 934
second stride / in the second cache.

A 4

Update the MRU stride number to the stride | _ 93
number of the second stride /.

A 4

Update the demote status for the unmodified
non-sequential tracks included in the stride as }— 238
demote "complete".

FIG. 9B

A 4

Decrement the number free strides. |— 240

U.S. Patent Oct. 18, 2016 Sheet 6 of 10 US 9,471,496 B2

Receive track to add to first cache (being 250
promoted from storage or second cache or write
received from host).

Is 254
track already in Update the track in the
the first first cache.
cache?
256
Create a control block for the track to add indicating
location in the first cache and whether modified/unmodified
and sequential/non-sequential.

v 258 266

Add entry to first cache track index having track
ID of track to add and index to created cache
control block in the control block directory.

Invalidate the
track in the
second cache.

A 4

' 260 | 268
Add entry to MRU end of LRU list of track type
(modified, unmodified sequential, unmodified Increment the free
non-sequential) of track to add. strides if the stride

including the invalidated
track has no more
valid tracks.

Is track

3 s copy
to add modified of track to add in the
non-sequential second cache?

track?

FIG. 10

U.S. Patent

Oct. 18, 2016

Add tracks from first stride from first
cache to second stride in second cache.

! 302

Sheet 7 of 10

Create second stride information indicating
the tracks from the first stride being added.

318

Determine stride in
second cache including

v 304

For each track in the first stride being
added to the second stride, do:

J 306
Add track to the LSA in the second cache.

s
track already included
in the second

Yes

312

Create a cache control block for the track
to add indicating location in the LSA and
that it is unmodified.

! 314

Add entry to second cache track index
having track ID of promoted track and
index to created cache control block.

A 4 /_ 316
Indicate the promoted track at the

A 4

the old version of the
track to be updated by
track from first cache.

| 30

Invalidate the track in the
determined stride having
the old version of the track.

322

Increment the free strides
if the stride including the
invalidated track has no
more valid tracks.

| 3

Update the cache control
block for the track indicating
the location in the LSA, that

the data is unmodified,
and that the track is valid,
and indicate the second
stride to which the updated
track is written.

MRU end of the unmodified LRU list. |

. 326
L Go back to block 306 for next track. J

FIG. 11

US 9,471,496 B2

U.S. Patent Oct. 18, 2016 Sheet 8 of 10 US 9,471,496 B2

Initiate operation to determine whether to remove tracks 390
to accommodate tracks to add to second cache.

\ 4

Determine unmodified tracks at | _- 359
LRU end of unmodified LRU list.

A 4

Invalidate determined unmodified tracks without
destaging to storage and remove the invalidated |— 354
modified tracks from the unmodified LRU list.

A\ 4

Increment the free strides if the stride including |- 356
the invalidated track has no more valid tracks.

FIG. 12

U.S. Patent Oct. 18, 2016 Sheet 9 of 10

US 9,471,496 B2

writing stride from first cache to stride in second cache.

< Initiate operation to free strides in the second cache aﬁer> 310

372
Are there

A 4

stride threshold?

fewer free strides than free

Set 7 to stride number following MRU stride number. }— 374

<

376

Is
stride number /

empty?
Yes

Increment i. |— 378

Set the target stride to stride number /.

L— 380

v
382 ~{ Increment .

A

384

|s stride
number / partially
full?

\ 4

No

Copy track from stride number / to the target stride. |— 386

v

Invalidate track from stride number / copied to target stride. }— 388

392

Increment the number
of free strides.

target stride «
Yes

FIG. 13

Set MRU stride number to target stride number. |— 396

U.S. Patent

Oct. 18, 2016

Receive a read request for
requested tracks.

<

Are all the
requested tracks in
the first cache?

Yes

Use the second cache track index to
determine any of the requested tracks
in the second cache not in the
first cache.

Are
there any requested
tracks not in the first or
the second
cache?

Sheet 10 of 10

— 456

US 9,471,496 B2

7 450

464
[

Use the first cache track
index to retrieve the
requested tracks from the
first cache to return to the
read request.

466
v |

Move the entries for the
retrieved tracks from the
first cache to the MRU end
of the LRU list for the
returned tracks.

Determine any of the requested tracks in the
storage not in the first or the second cache.

— 460

\ 4

cache and/or the storage to the first cache.

Promote any of the determined tracks in the second

— 462

FIG. 14

US 9,471,496 B2

1
DEMOTING TRACKS FROM A FIRST
CACHE TO A SECOND CACHE BY USING A
STRIDE NUMBER ORDERING OF STRIDES
IN THE SECOND CACHE TO
CONSOLIDATE STRIDES IN THE SECOND
CACHE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/779,412, filed on Feb. 27, 2013, which is a
continuation of U.S. patent application Ser. No. 13/352,236,
filed Jan. 17, 2012, which patent applications are incorpo-
rated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a computer program
product, system, and method for demoting tracks from a first
cache to a second cache by using a stride number ordering
of strides in the second cache to consolidate strides in the
second cache.

2. Description of the Related Art

A cache management system buffers tracks in a storage
device recently accessed as a result of read and write
operations in a faster access storage device, such as memory,
than the storage device storing the requested tracks. Subse-
quent read requests to tracks in the faster access cache
memory are returned at a faster rate than returning the
requested tracks from the slower access storage, thus reduc-
ing read latency. The cache management system may also
return complete to a write request when the modified track
directed to the storage device is written to the cache memory
and before the modified track is written out to the storage
device, such as a hard disk drive. The write latency to the
storage device is typically significantly longer than the
latency to write to a cache memory. Thus, using cache also
reduces write latency.

A cache management system may maintain a linked list
having one entry for each track stored in the cache, which
may comprise write data buffered in cache before writing to
the storage device or read data. In the commonly used Least
Recently Used (LRU) cache technique, if a track in the
cache is accessed, i.e., a cache “hit”, then the entry in the
LRU list for the accessed track is moved to a Most Recently
Used (MRU) end of the list. If the requested track is not in
the cache, ie., a cache miss, then the track in the cache
whose entry is at the LRU end of the list may be removed
(or destaged back to storage) and an entry for the track data
staged into cache from the storage is added to the MRU end
of the LRU list. With this LRU cache technique, tracks that
are more frequently accessed are likely to remain in cache,
while data less frequently accessed will more likely be
removed from the LRU end of the list to make room in cache
for newly accessed tracks.

There is a need in the art for improved techniques for
using cache in a storage system.

SUMMARY

Provided are a computer program product, system, and
method for demoting tracks from a first cache to a second
cache by using a stride number ordering of strides in the
second cache to consolidate strides in the second cache.
Information on strides configured in the second cache

10

15

20

25

30

35

40

45

50

55

60

65

2

includes information indicating a number of valid tracks in
the strides, wherein a stride has at least one of valid tracks
and free tracks not including valid data. A determination is
made of tracks to demote from the first cache. A first stride
is formed including the determined tracks to demote. The
tracks from the first stride are added to a second stride in the
second cache that has no valid tracks. A target stride in the
second cache is selected based on a stride most recently used
to consolidate strides from at least two strides into one
stride. Data from the valid tracks is copied from at least two
source strides in the second cache to the target stride.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a computing envi-
ronment.

FIG. 2 illustrates an embodiment of first cache manage-
ment information.

FIG. 3 illustrates an embodiment of second cache man-
agement information.

FIG. 4 illustrates an embodiment of a first cache control
block.

FIG. 5 illustrates an embodiment of a second cache
control block.

FIG. 6 illustrates an embodiment of stride information.

FIG. 7 illustrates an embodiment of a second cache RAID
configuration.

FIG. 8 illustrates an embodiment of a storage RAID
configuration.

FIGS. 9a and 95 illustrate an embodiment of operations to
demote unmodified non-sequential tracks from the first
cache to promote to the second cache.

FIG. 10 illustrates an embodiment of operations to add a
track to the first cache.

FIG. 11 illustrates an embodiment of operations to add
tracks from the first stride to the second stride.

FIG. 12 illustrates an embodiment of operations to free
space in the second cache.

FIG. 13 illustrates an embodiment of operations to free
strides in the second cache.

FIG. 14 illustrates an embodiment of operations to pro-
cess a request for tracks to return to a read request.

DETAILED DESCRIPTION

Described embodiments provide techniques for promot-
ing tracks from a first cache in strides so that the tracks may
be written as full stride writes to strides in the second cache
to improve the efficiency of cache promotion operations.
Further, while tracks are being promoted from the first cache
14 to the second cache 18 as strides, tracks are demoted from
the second cache 18 on a track basis according to a cache
demotion algorithm, such as an LRU algorithm. To maintain
free strides in the second cache to be available to store
strides of tracks from the first track, strides in the second
cache that are partially full, i.e., having valid and invalid
tracks, may be combined into one stride. Described embodi-
ments select source strides to merge into target strides based
on a round robin technique of selecting tracks to merge from
a most recently used stride number to which tracks from the
first cache or second cache were written.

FIG. 1 illustrates an embodiment of a computing envi-
ronment. A plurality of hosts 2a, 26 . . . 2z may submit
Input/Output (I/O) requests to a storage controller 4 over a
network 6 to access data at volumes 8 (e.g., Logical Unit
Numbers, Logical Devices, Logical Subsystems, etc.) in a
storage 10. The storage controller 4 includes a processor

US 9,471,496 B2

3

complex 12, including one or more processors with single or
multiple cores, a first cache 14 and a second cache 18. The
first 14 and second 18 caches cache data transferred between
the hosts 2a, 26 . . . 2r and the storage 10.

The storage controller 4 has a memory 20 that includes a
storage manager 22 for managing the transfer of tracks
transferred between the hosts 2a, 26 . . . 2z and the storage
10 and a cache manager 24 that manages data transferred
between the hosts 2a, 25 . . . 2n and the storage 10 in the first
cache 14, and the second cache 18. A track may comprise
any unit of data configured in the storage 10, such as a track,
Logical Block Address (LBA), etc., which is part of a larger
grouping of tracks, such as a volume, logical device, etc. The
cache manager 24 maintains first cache management infor-
mation 26 and second cache management information 28 to
manage read (unmodified) and write (modified) tracks in the
first cache 14 and the second cache 18.

The storage manager 22 and cache manager 24 are shown
in FIG. 1 as program code loaded into the memory 20 and
executed by the processor complex 12. Alternatively, some
or all of the functions may be implemented in hardware
devices in the storage controller 4, such as in Application
Specific Integrated Circuits (ASICs).

The second cache 18 may store tracks in a log structured
array (LSA) 32, where tracks are written in a sequential
order as received, thus providing a temporal ordering of the
tracks written to the second cache 18. In a LSA, later
versions of tracks already present in the LSA are written at
the end of the LSA 32. In alternative embodiments, the
second cache 18 may store data in formats other than in an
LSA.

The memory 20 further includes second cache RAID
configuration information 34 providing information on a
RAID configuration used to determine how to form a stride
of tracks to store in the second cache 18. In one embodiment,
the second cache 18 may be comprised of a plurality of
storage devices, such as separate solid state storage devices
(SSDs), such that the strides formed of tracks from the first
cache 14 are striped across the separate storage devices
forming the second cache 18, such as flash memories. In a
further embodiment, the second cache 18 may comprise a
single storage device, such as one flash memory, such that
the tracks are grouped in strides as defined by the second
cache RAID configuration 34, but the tracks are written as
strides to a single device, such as one flash memory, imple-
menting the second cache 18. The tracks of strides config-
ured for the second cache RAID configuration 34 may be
written to the LSA 32 in the second cache 18 device. The
second cache RAID configuration 34 may specify different
RAID levels, e.g., levels 5, 10, etc.

The memory 20 further includes storage RAID configu-
ration information 36 providing information on a RAID
configuration used to determine how to write tracks from the
first cache 14 or second cache 18, if the second cache 18
should store modified data, to the storage system 10, where
the tracks in the destaged stride are striped across the storage
devices, such as disk drives, in the storage system 10.

In one embodiment, the first cache 14 may comprise a
Random Access Memory (RAM), such as a Dynamic Ran-
dom Access Memory (DRAM), and the second cache 18
may comprise a flash memory, such as a solid state device,
and the storage 10 is comprised of one or more sequential
access storage devices, such as hard disk drives and mag-
netic tape. The storage 10 may comprise a single sequential
access storage device or may comprise an array of storage
devices, such as a Just a Bunch of Disks (JBOD), Direct
Access Storage Device (DASD), Redundant Array of Inde-

10

15

20

25

30

35

40

45

50

55

60

65

4

pendent Disks (RAID) array, virtualization device, etc. In
one embodiment, the first cache 14 is a faster access device
than the second cache 18, and the second cache 18 is a faster
access device than the storage 10. Further, the first cache 14
may have a greater cost per unit of storage than the second
cache 18 and the second cache 18 may have a greater cost
per unit of storage than storage devices in the storage 10.

The first cache 14 may be part of the memory 20 or
implemented in a separate memory device, such as a
DRAM.

The network 6 may comprise a Storage Area Network
(SAN), a Local Area Network (LAN), a Wide Area Network
(WAN), the Internet, and Intranet, etc.

FIG. 2 illustrates an embodiment of the first cache man-
agement information 26 including a track index 50 provid-
ing an index of tracks in the first cache 14 to control blocks
in a control block directory 52; an unmodified sequential
LRU list 54 providing a temporal ordering of unmodified
sequential tracks in the first cache 14; a modified LRU list
56 providing a temporal ordering of modified sequential and
non-sequential tracks in the first cache 14; an unmodified
non-sequential LRU list 58 providing a temporal ordering of
unmodified non-sequential tracks in the first cache 14; and
stride information 60 providing information on strides
formed of unmodified non-sequential tracks in the first cache
14 to write to the second cache 18 as a full stride write.

In certain embodiments, upon determining that the first
cache 18 is full, the modified LRU list 56 is used to destage
modified tracks from the first cache 14 to the storage 10 so
that the copy of those destaged tracks in the first cache 18
may be discarded to make room in the first cache 18 for new
modified tracks.

Once a modified non-sequential track is destaged from the
first cache 14 to the storage 10, then the cache manager 24
may designate that destaged tracks as an unmodified non-
sequential track in the first cache 14 and add indication of
the newly designated unmodified track to the unmodified
non-sequential LRU list 58, from where it is eligible to be
promoted to the second cache 14. The state of the destaged
modified track may be changed by updating the first cache
control block 104 to indicate the destaged modified non-
sequential track as unmodified in field 106. Thus, unmodi-
fied non-sequential tracks in the first cache 14 may comprise
read data or modified non-sequential tracks that were
destaged to the storage 10 according to the modified LRU
list 56. Thus, destaged modified tracks that become unmodi-
fied tracks in the LRU list 58 may be promoted to the second
cache 14 to be available for subsequent read requests. In
these embodiments, the second cache 14 comprises a read
only cache to cache unmodified non-sequential tracks.

FIG. 3 illustrates an embodiment of the second cache
management information 28 including a track index 70
providing an index of tracks in the second cache 18 to
control blocks in a control block directory 72; an unmodified
list 74 providing a temporal ordering of unmodified tracks in
the second cache 18; stride information 78 providing infor-
mation on strides of tracks written to the second cache 18,
and stride management information 80 including informa-
tion for managing the strides. In certain embodiments, the
strides are numbered so that stride numbers form an ordering
of the strides, such as consecutive integer numbers. The
stride management information may include a last stride
number 80 indicating a last or highest number in the stride
number ordering to assign to a stride; a most recently used
(MRU) stride number 82 indicating a stride number to which
tracks from the first cache 14 or second cache 18 were most
recently written to fill that stride; a number of free strides 84

US 9,471,496 B2

5

having no valid tracks; and a free stride threshold 86
indicating a minimum number of free strides to maintain. In
one embodiment, the second cache 18 only stores unmodi-
fied, non-sequential tracks. In further embodiments, the
second cache 18 may also store modified and/or sequential
tracks.

When the second cache 18 is initialized for operations, the
number of free strides 84 would be equal to the total number
of strides, such as the last stride number 80 and the MRU
stride number would point to the first stride number in the
ordering. In this way, the stride numbers from the first stride
number, e.g., 0, to the last stride number, e.g., integer n,
provide an ordering of the strides that may be used to select
strides to receive tracks from the first cache 14 or to
consolidate partially filled strides to free strides.

All the LRU lists 54, 56, 58, and 74 may include the track
IDs of tracks in the first cache 14 and the second cache 18
ordered according to when the identified track was last
accessed. The LRU lists 54, 56, 58, and 74 have a most
recently used (MRU) end indicating a most recently
accessed track and a LRU end indicating a least recently
used or accessed track. The track IDs of tracks added to the
caches 14 and 18 are added to the MRU end of the LRU list
and tracks demoted from the caches 14 and 18 are accessed
from the LRU end. The track indexes 50 and 70 may
comprise a scatter index table (SIT). Alternative type data
structures may be used to provide the temporal ordering of
tracks in the caches 14 and 18.

Non-sequential tracks may comprise Online Line Trans-
action Processing (OLTP) tracks, which often comprise
small block writes that are not fully random and have some
locality of reference, i.e., have a probability of being repeat-
edly accessed.

FIG. 4 illustrates an embodiment of a first cache control
block 100 entry in the control block directory 52, including
a control block identifier (ID) 102, a first cache location 104
of the physical location of the track in the first cache 14,
information 106 indicating whether the track is modified or
unmodified, information 108 indicating whether the track is
a sequential or non-sequential access, and information 110
indicating a demote status for the track, such as no demotion,
ready to demote, and demote complete.

FIG. 5 illustrates an embodiment of a second cache
control block 120 entry in the second cache control block
directory 72, including a control block identifier (ID) 122; an
LSA location 124 where the track is located in the LSA 32;
modified/unmodified info 126 indicating whether the track
is modified or unmodified; a valid/invalid flag 128 indicating
whether the track is valid or invalid; and a stride 130
indicating the stride in which the track is included. A track
in the second cache 18 is indicated as invalid if the track is
updated in the first cache 14 or if the track is demoted from
the second cache 18.

FIG. 6 illustrates an instance 130 of the stride information
60, 78 for one stride to be formed in the second cache 18,
including a stride identifier (ID) 132 and tracks 134 of the
storage 10 included in the stride 132.

FIG. 7 illustrates an embodiment of the second cache
RAID configuration 34 that is maintained to determine how
to form strides of tracks in the second cache 18 from the
tracks in the first cache 14. A RAID level 140 indicates the
RAID configuration to use, e.g., RAID 1, RAID 5, RAID 6,
RAID 10, etc., a number of data disks (m) 142 storing tracks
of user data, and a number of parity disks (p) 144 storing
parity calculated from the data disks 142, where p can be one
or more, indicating the number of disks for storing the
calculated parity blocks. An unmodified parity optional flag

15

25

30

40

45

6

148 indicates whether parity should be calculated for
unmodified non-sequential tracks in the first cache 14 being
promoted to the second cache 18. This optional flag 148
allows for only including unmodified non-sequential tracks
in a stride to fill the stride with only unmodified non-
sequential tracks. The stride of unmodified non-sequential
tracks in the first cache 14 may be indicated in an LSA 32,
where the tracks of the stride are striped across m plus p
storage devices forming the second cache 18. Alternatively,
the second cache 18 may comprise fewer than n devices.

FIG. 8 illustrates an embodiment of the storage RAID
configuration 36 that is maintained to determine how to form
strides of modified tracks in the second cache 18 to stripe
across the disks of the storage 10. A RAID level 150
indicates the RAID configuration to use, a number of data
disks (m) 152 storing tracks of user data, and a number of
parity disks (p) 154 storing parity calculated from the data
disks 152, where p can be one or more, indicating the
number of disks for storing the calculated parity blocks. The
stride of tracks from the second cache 18 may be striped
across disks in the storage system 10.

In one embodiment, the second cache 34 and storage 36
RAID configurations may provide different parameters or
have the same parameters, such as different RAID levels,
data disks, parity disks, etc.

FIGS. 9a and 95 illustrate an embodiment of operations
performed by the cache manager 24 to demote unmodified
non-sequential tracks from the first cache 14 to promote to
the second cache 18, where the unmodified non-sequential
tracks may be selected from the LRU end of the unmodified
non-sequential LRU list 58 when space is needed. Upon
initiating (at block 200) the operation to demote selected
unmodified non-sequential tracks, the demote status 110
(FIG. 4) of the unmodified non-sequential tracks selected to
demote is set (at block 202) to “ready”. The cache manager
24 uses (at block 204) the second cache RAID configuration
information 34 to form a first stride of tracks from the first
cache 114 to promote to a stride in the second cache 18. For
instance, forming the first stride of tracks may comprise
forming a stride for a RAID configuration based on a RAID
configuration defined 34 for the second cache as having n
devices including m devices for storing tracks of data and at
least one parity device p to store parity data calculated from
the tracks of data for the m devices. Further, the first stride
of tracks may be striped across n solid state storage devices
without parity to form the second stride in embodiments
where the second cache comprises at least n solid state
storage devices.

The cache manager 24 processes (at block 206) the
unmodified non-sequential LRU 58 list to determine a
number of unmodified non-sequential tracks having a
demote status 110 of ready in their control blocks 100. If the
cache manager 24 determines (at block 208) that the number
of unmodified non-sequential tracks is sufficient to form a
stride, then the cache manager 24 populates (at block 210)
the first stride of unmodified non-sequential tracks having a
demote status 110 of ready. In one embodiment, the first
stride may be populated starting from the LRU end of the
unmodified non-sequential LRU list 58 and use enough
tracks for the data disks in stride. If (at block 212) the RAID
configuration specifies parity disks, then the cache manager
24 calculates (at block 212) parity for the unmodified
non-sequential tracks included in the stride and includes
parity data (for the p parity disks) in the stride. If (at block
208) there are not sufficient unmodified non-sequential
tracks in the first cache 14 to fill the first stride, then control
ends until there are a sufficient number of unmodified

US 9,471,496 B2

7

non-sequential tracks having the demote ready status avail-
able to populate the first stride.

After populating the first stride (at blocks 210 and 212),
control proceeds to block 220 in FIG. 95 to determine a free
second stride in the second cache 18 in which to include the
tracks from the first stride.

If (at block 220) the MRU stride number 82, last filled
stride number in the second cache 18, is the last stride
number 80 in the stride number ordering, then i, the stride
number to consider, is set to the first stride number in the
stride number ordering. If (at block 220) the MRU stride
number 82 is not the last stride number 80, then the cache
manager 24 sets (at block 224) i to the next consecutive
stride number from the MRU stride number 82. If (at block
226) stride i does not have all free tracks, i.e., no valid
tracks, then it cannot be used for a full stride write from the
first stride of tracks from the first cache 14 and control
proceeds to select the next stride number in the number
ordering. To select the next stride number in the ordering, if
(at block 228) stride i is the last stride number 80, then
control proceeds to block 222 to consider the first stride
number in the ordering. Otherwise, if stride i is not the last
stride number 80, then i is incremented (at block 230) to the
next stride number in the ordering.

After determining a next stride number i to consider from
blocks 222, 224 or 230, the cache manager 24 determines (at
block 226) whether stride 1 has all free tracks, i.e., no valid
tracks. If not, then control proceeds to block 228 to select the
next stride number in the ordering to consider. Otherwise, if
(at block 226) stride 1 does have all free tracks, i.e., no valid
tracks, then the cache manager 24 selects (at block 232)
stride 1 as the second stride for the full stride write of tracks
from the first cache 14 and writes (at block 234) the first
stride of tracks from the first cache 14 to the second stride
i in the second cache 18. The cache manager 24 updates (at
block 236) the MRU stride number 82 to the stride number
of the second stride i to which the tracks were written from
the first stride at block 234. The cache manager 24 further
updates (at block 238) the demote status 110 for the unmodi-
fied non-sequential tracks included in the stride as demote
“complete”. The cache manager 24 decrements (at block
240) the number of free strides 84 because the previously
free second stride i is now no longer empty.

The described operations of FIGS. 9a and 95 utilize a
round robin algorithm to select the stride in the second cache
18 to receive the full stride write from the first cache 14 by
considering strides in a stride number ordering from the
most recently used stride 82 previously filled.

Although the operations of FIGS. 9a and 94 are described
as demoting unmodified non-sequential tracks from the first
cache 14 to promote to the second cache 18, in alternative
embodiments, the operations may apply to demoting differ-
ent types of tracks, such as modified, sequential, etc.

With the described embodiments, the unmodified tracks
from the first cache 14 are gathered and written as a stride
to the second cache 18 so that one Input/Output (I/O)
operation is used to transfer multiple tracks.

FIG. 10 illustrates an embodiment of operations per-
formed by the cache manager 24 to add, i.e., promote, a track
to the first cache 14, which track may comprise a write or
modified track from a host 2a, 26 . . . 21, a non-sequential
track in the second cache 18 that is subject to a read request
and as a result moved to the first cache 14, or read requested
data not found in either cache 14 or 18 and retrieved from
the storage 10. Upon receiving (at block 250) the track to
add to the first cache 14, if (at block 252) a copy of the track
is already included in the first cache 14, i.e., the received

10

15

20

25

30

35

40

45

50

55

60

65

8

track is a write, then the cache manager 24 updates (at block
254) the track in the first cache 14. If (at block 252) the track
is not already in the cache, then the cache manager 24
creates (at block 256) a control block 100 (FIG. 4) for the
track to add indicating the location 104 in the first cache 14
and whether the track is modified/unmodified 106 and
sequential/non-sequential 108. This control block 100 is
added to the control block directory 52 of the first cache 14.
The cache manager 24 adds (at block 258) an entry to the
first cache track index 50 having the track ID of track to add
and an index to the created cache control block 100 in the
control block directory 52. An entry is added (at block 260)
to the MRU end of the LRU list 54, 56 or 58 of the track type
of the track to add. If (at block 262) the track to add is a
modified non-sequential track and if (at block 264) a copy of
the track to add is in the second cache 18 (i.e., an older
version of the track), as determined from the second cache
track index 70, then the copy of the track in the second cache
18 is invalidated (at block 266), such as by setting the
valid/invalid flag 128 in the cache control block 120 for the
older version of the track in the second cache 18 to invalid.
The cache manger 24 may further increment (at block 268)
the number of free strides 86 if the stride including the track
invalidated at block 266 has no more valid tracks. If (at
block 262) the track to add is unmodified sequential, the
second cache 18 does not include a copy (older version) of
the track being added to the second cache 18 (no branch of
block 264) or after incrementing the number of free strides
84 (at block 268) control ends.

The cache manager 24 can determine whether a stride 130
has no more valid tracks, i.e., is empty or free, by processing
the second cache control block 120 (FIG. 5) for each track
134 in the stride.

FIG. 11 illustrates an embodiment of operations per-
formed by the cache manager 24 to add tracks from the first
stride from the first cache 14 to the second stride in the
second cache 18, such as to perform the operation at block
234 in FIG. 9b. The cache manager 24 creates (at block 302)
stride information 130 (FIG. 6) for the second stride indi-
cating the tracks 134 from the first stride being added. For
each track in the first stride being added, a loop of operations
is performed at blocks 304 through 318. The cache manager
24 adds (at block 306) indication, such as the track ID, of the
track being promoted to the LSA 32 in the second cache 18.
It (at block 308) the track being added is already in the
second cache 18 (i.e., an older version of the track), then the
cache manager 24 determines (at block 318) the stride in the
second cache 18 including the old version of the track to be
updated by the track from first cache. 14 and invalidates (at
block 320) the track in the determined stride having the older
version of the track. The cache manager 24 increments (at
block 322) the number of free strides 84 if the stride
including the invalidated track, invalidated at block 320, has
no more valid tracks. The cache manager 24 updates (at
block 324) the cache control block 120 for the track indi-
cating the location 124 in the LSA 32, that the data is
unmodified 126, and that and that the track is valid 128.

If (at block 308) the track is not already in the second
cache 18, then the cache manager 24 creates (at block 312)
a control block 120 (FIG. 5) for the track to add indicating
the track location 124 in the LSA 32 and whether the track
is modified/unmodified 126. An entry is added (at block 314)
to the second cache track index 70 having the track ID ofthe
promoted track and an index to the created cache control
block 120 in the control block directory 72 for the second
cache 18. From block 324 or 314, the cache manager 24

US 9,471,496 B2

9

indicates (at block 316) the promoted track at the MRU end
of the unmodified LRU list 74, such as by adding the track
1D to the MRU end.

FIG. 12 illustrates an embodiment of operations per-
formed by the cache manager 24 to free space in the second
cache 18 for new tracks to add to the second cache 18, i.e.,
tracks being demoted from the first cache 14. Upon initiating
this operation (at block 350), the cache manager 24 deter-
mines (at block 352) unmodified tracks in the second cache
18 from the LRU end of the unmodified LRU list 74 and
invalidates (at block 354) the determined unmodified tracks
without destaging the invalidated unmodified tracks to the
storage 10, and also removes the invalidated unmodified
tracks from the unmodified LRU list 74 and indicates the
track as invalid 128 in the cache control block 120 for the
track. The cache manager 24 may increment (at block 356)
the number of free strides 84 if the stride including the
invalidated track, invalidated at block 354, has no more
valid tracks.

The unmodified tracks in the second cache 18 may
comprise read tracks added to the first cache 14 or modified
tracks destaged from the first cache 14. Further, the tracks
selected by the cache manager 24 for demotion from the
second cache 18 may be from different strides formed in the
second cache 18. Further, strides in the second cache 18 may
include both valid and invalid tracks, where tracks are
invalidated by demoting from the second cache 18 or by the
track being updated in the first cache 18.

In certain embodiments, the cache manager 24 uses
different track demotion algorithms to determine tracks to
demote from the first cache 14 and the second cache 18 by
using separate LRU lists 58 and 74 for the first 14 and
second 18 caches 18, respectively, to determine the tracks to
demote. The algorithms used to select tracks for demotion in
the first 14 and second 18 caches may consider character-
istics of the tracks in the first 14 and second 18 caches to
determine tracks to demote first.

FIG. 13 illustrates an embodiment of operations per-
formed by the cache manager 24 to free strides in the second
cache 18 to make available for strides of tracks in the first
cache 14 after writing the first stride of tracks from the first
cache 14 to the second stride in the second cache 18. The
operations of FIG. 13 utilize a round robin algorithm to
select strides to consolidate to free strides based on an
ordering of the stride numbers. Upon initiating (at block
370) an operation to free strides in the second cache 18, the
cache manager determines (at block 372) if the number of
free strides 84 is less than the free stride threshold 86. For
instance, the cache manager 24 may ensure that there are
always at least two or some other number of free strides to
be available for strides formed from the first cache 14 tracks.
If the number of free strides is not below the threshold, then
control ends. Otherwise, if (at block 372) the number of free
strides is less than the threshold, then the cache manager 24
sets (at block 374) i, indicating a stride number to consider,
to the stride number following the MRU stride number 82,
last filled stride, in the stride number ordering.

If (at block 376) stride number 1 is not empty, i.e., has one
or more valid tracks then it is not eligible to be the empty
target stride into which strides are consolidated, and the
cache manager 24 increments (at block 378) i to the next
stride number in the stride number ordering. If the stride
number i being incremented is the last stride number 80 in
the ordering, then the increment operation at blocks 374,
378, and 382 and elsewhere sets the stride number 1 to the
first stride number in the ordering, otherwise the stride
number is incremented to the next non-last stride number. If

20

25

40

45

10

(at block 376) the stride number i is empty, then the cache
manager 24 sets (at block 380) the target stride to stride
number i into which tracks from source strides are consoli-
dated to free the source strides. After setting the target stride,
control proceeds to blocks 382 et seq. to select the source
strides from which tracks are copied to the target stride,
where the considered source strides to consolidate are those
immediately following the target stride in the stride number
ordering.

At block 382, the cache manager 24 increments i to the
next stride number in the ordering. If (at block 384) the
stride number i is not partially full with valid tracks, i.e.,
empty (having no valid tracks) or full (having only valid
tracks), then it is not a suitable stride to consolidate with
other strides, and the cache manager 24 proceeds back to
block 382 to increment the stride number i to the next stride
number in the ordering to consider for a source stride.
Otherwise, if (at block 384) the stride number i is partially
full (not empty nor full), then it is a suitable stride to
consolidate with other strides, and the cache manager 24
copies (at block 386) a valid track from the stride number i
to the target stride and invalidates (at block 388) the track
from stride number i copied at block 386. After the copying,
if (at block 390) source stride i is empty, i.e., having no more
valid tracks to copy, then the cache manager 24 increments
(at block 392) the number of free strides 84. From block 392
or if (at block 390) the source stride i being considered is not
empty, then if (at block 394) the target stride is not full,
control proceeds back to block 384 to copy more tracks from
stride 1 or the next stride in the ordering to the target stride.
If (at block 394) the target stride is full 394, then the cache
manager 24 sets (at block 396) the MRU stride number 82
to the target stride number. From block 396, control may
proceed back to block 372 to determine whether further
strides need to be consolidated to provide that the number of
free strides is at least the free stride threshold 86.

The described operations of FIG. 13 consider strides
sequentially in an ordering for consolidation, so that after a
stride is filled with tracks from the first cache 14, the cache
manager 24 determines whether there a sufficient number of
free strides following the stride just written in the ordering.
The cache manager 24 will in a round robin manner select
strides to consolidate into a stride.

FIG. 14 illustrates an embodiment of operations per-
formed by the cache manager 24 to retrieve requested tracks
for a read request from the caches 14 and 18 and storage 10.
The storage manager 22 processing the read request may
submit requests to the cache manager 24 for the requested
tracks. Upon receiving (at block 450) the request for the
tracks, the cache manager 24 uses (at block 454) the first
cache track index 50 to determine whether all of the
requested tracks are in the first cache 14. If (at block 454) all
requested tracks are not in the first cache 14, then the cache
manager 24 uses (at block 456) the second cache track index
70 to determine any of the requested tracks in the second
cache 18 not in the first cache 14. If (at block 458) there are
any requested tracks not found in the first 14 and second 18
caches, then the cache manager 24 determines (at block 460)
any of the requested tracks in the storage 10, from the second
cache track index 70, not in the first 14 and the second 18
caches. The cache manager 24 then promotes (at block 462)
any of the determined tracks in the second cache 18 and the
storage 10 to the first cache 14. The cache manager 24 uses
(at block 464) the first cache track index 50 to retrieve the
requested tracks from the first cache 14 to return to the read
request. The entries for the retrieved tracks are moved (at

US 9,471,496 B2

11

block 466) to the MRU end of the LRU list 54, 56, 58
including entries for the retrieved tracks.

With the operations of FIG. 14, the cache manager 24
retrieves requested tracks from a highest level cache 14, then
second cache 18 first before going to the storage 10, because
the caches 14 and 18 would have the most recent modified
version of a requested track. The most recent version is first
found in the first cache 14, then the second cache 18 if not
in the first cache 14 and then the storage 10 if not in either
cache 14, 18.

Described embodiments provide techniques to group
tracks in a first cache in strides defined according to a RAID
configuration for the second cache, so that tracks in the first
cache can be grouped in strides to a second cache. The tracks
cached in the second cache may then be grouped into strides,
defined according to a RAID configuration for the storage,
and then written to the storage system. The described
embodiments allow full stride writes to be used to promote
demoted tracks in the first cache to the second cache.

Described embodiments provide techniques to free strides
of' tracks in the second cache 18 by consolidating tracks from
multiple source strides into a target stride based on an
ordering of tracks according to stride numbers. Strides are
freed in the second cache to make available for promoting
tracks from the first cache 14 in strides so that the tracks may
be written as full stride writes to strides in the second cache
18 to improve the efficiency of cache promotion operations.
The described embodiments allow full stride writes to be
used to promote demoted tracks in the first cache to the
second cache in order to conserve resources by promoting an
entire stride to the second cache as a single 1/O operation.

Further, while tracks are being promoted from the first
cache 14 to the second cache 18 as strides, tracks are
demoted from the second cache 18 on a track-by-track basis
according to a cache demotion algorithm, such as an LRU
algorithm.

The described operations may be implemented as a
method, apparatus or computer program product using stan-
dard programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof.
Accordingly, aspects of the embodiments may take the form
of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects
of the embodiments may take the form of a computer
program product embodied in one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this

10

15

20

25

30

35

40

45

50

55

60

65

12

document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide

US 9,471,496 B2

13

processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, “some embodiments”, and “one
embodiment” mean “one or more (but not all) embodiments
of the present invention(s)” unless expressly specified oth-
erwise.

The terms “including”, “comprising”, “having” and varia-
tions thereof mean “including but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any
or all of the items are mutually exclusive, unless expressly
specified otherwise.

The terms “a”, “an” and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly
or indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all
such components are required. On the contrary a variety of
optional components are described to illustrate the wide
variety of possible embodiments of the present invention.

Further, although process steps, method steps, algorithms
or the like may be described in a sequential order, such
processes, methods and algorithms may be configured to
work in alternate orders. In other words, any sequence or
order of steps that may be described does not necessarily
indicate a requirement that the steps be performed in that
order. The steps of processes described herein may be
performed in any order practical. Further, some steps may be
performed simultaneously.

When a single device or article is described herein, it will
be readily apparent that more than one device/article
(whether or not they cooperate) may be used in place of a
single device/article. Similarly, where more than one device
or article is described herein (whether or not they cooperate),
it will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embod-
ied by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device itself.

The illustrated operations of the figures show certain
events occurring in a certain order. In alternative embodi-
ments, certain operations may be performed in a different
order, modified or removed. Moreover, steps may be added
to the above described logic and still conform to the
described embodiments. Further, operations described
herein may occur sequentially or certain operations may be
processed in parallel. Yet further, operations may be per-
formed by a single processing unit or by distributed pro-
cessing units.

The foregoing description of various embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi-
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples

10

25

30

35

40

45

14

and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
embodiments of the invention can be made without depart-
ing from the spirit and scope of the invention, the invention
resides in the claims herein after appended.

What is claimed is:

1. A method for managing data in a computer readable
cache system comprising a first cache, a second cache, and
a storage system comprised of storage devices, comprising:

maintaining information on strides configured in the sec-

ond cache, wherein a stride has at least one of valid
tracks and free tracks not including valid data, wherein
the strides comprise data strides populated with tracks
of data, wherein the strides configured in the second
cache are comprised of tracks grouped as defined by a
configuration of the storage, wherein the strides of
tracks formed in the second cache are striped in the
storage system, and wherein the second cache caches
tracks stored in the storage system;

determining tracks to demote from the first cache;

forming a first stride including the determined tracks to

demote;

adding the tracks from the first stride to a second stride in

the second cache that has no valid tracks;

selecting a target stride in the second cache, based on a

stride most recently used, to consolidate strides from at
least two source strides in the second cache into the
target stride; and

copying data from the valid tracks from the at least two

source strides in the second cache to the target stride.

2. The method of claim 1, further comprising;

maintaining indication of a number of free strides having

no valid tracks;

determining whether the number of free strides is below

a free stride threshold, wherein the selecting the target
stride and copying the data from the valid tracks from
the at least two source strides is performed in response
to determining that the number of free strides is below
the free stride threshold; and

invalidating the tracks in the at least two source strides

copied to the target stride.

3. The method of claim 1, wherein each stride is assigned
a stride number that provides an ordering of the strides,
wherein the at least two source strides have stride numbers
immediately following the stride number of the target stride
in the ordering and wherein the at least two source strides
have sufficient valid tracks to fill the target stride.

4. The method of claim 1, wherein each of the strides is
assigned a stride number that provides an ordering of the
strides, further comprising:

selecting for the second stride an empty stride having a

next closest stride number in the ordering to the stride
to which tracks from the first cache were most recently
written.

5. The method of claim 1, further comprising:

determining one of the tracks in one of the strides in the

second cache to demote from the second cache; demot-
ing the determined track to demote from the second
cache; invalidating the determined track to demote in
the second cache; and incrementing a number of free
strides in response to determining that the stride includ-
ing the invalidated track has no valid tracks.

6. A computer program product for managing data in a
cache system comprising a first cache, a second cache
having multiple storage devices for storing tracks of data,
and a storage system comprised of storage devices, the
computer program product comprising a non-transitory

US 9,471,496 B2

15

computer readable storage medium having computer read-
able program code embodied therein that executes to per-
form operations, the operations comprising:
maintaining information on strides configured in the sec-
ond cache, wherein a stride has at least one of valid
tracks and free tracks not including valid data, wherein
the strides configured in the second cache are com-
prised of tracks grouped as defined by a configuration
of' the storage system, wherein the strides comprise data
strides populated with tracks of data, and wherein the
strides of tracks formed in the second cache are striped
in the storage system, and wherein the second cache
caches tracks stored in the storage system;

determining tracks to demote from the first cache;

forming a first stride including the determined tracks to
demote;

adding the tracks from the first stride to a second stride in

the second cache that has no valid tracks;

selecting a target stride in the second cache, based on a

stride most recently used, to consolidate strides from at
least two source strides in the second cache into the
target stride; and

copying data from the valid tracks from the at least two

source strides in the second cache to the target stride.

7. The computer program product of claim 6, wherein the
operations further comprise;

maintaining indication of a number of free strides having

no valid tracks;

determining whether the number of free strides is below

a free stride threshold, wherein the selecting the target
stride and copying the data from the valid tracks from
the at least two source strides is performed in response
to determining that the number of free strides is below
the free stride threshold; and

invalidating the tracks in the at least two source strides

copied to the target stride.

8. The computer program product of claim 6, wherein
selecting the target stride comprises selecting one of the
strides in the second cache having all free tracks to be the
target stride.

9. The computer program product of claim 6, wherein
each stride is assigned a stride number that provides an
ordering of the strides, wherein the at least two source
strides have stride numbers immediately following the stride
number of the target stride in the ordering and wherein the
at least two source strides have sufficient valid tracks to fill
the target stride.

10. The computer program product of claim 6, wherein
each of the strides is assigned a stride number that provides
an ordering of the strides, wherein copying valid tracks from
the at least two source strides comprises:

copying valid tracks to the target stride from strides

starting from the stride having a stride number imme-
diately following a target stride number and proceeding
sequentially through each stride having a next stride
number in the ordering until the target stride is full of
valid tracks.

11. The computer program product of claim 6, wherein
each of the strides is assigned a stride number that provides
an ordering of the strides, wherein the operations further
comprise:

selecting for the second stride an empty stride having a

next closest stride number in the ordering to the stride
to which tracks from the first cache were most recently
written.

12. The computer program product of claim 11, wherein
the operations further comprise:

5

20

30

40

45

16

selecting for the target stride an empty stride having a next
closest stride number in the ordering to the stride to
which tracks from the first cache were most recently
written.

13. The computer program product of claim 12, wherein
the copying of the valid tracks from the at least two source
strides comprises:

copying valid tracks from a first source stride having valid
tracks and a next closest stride number in the ordering
to a target stride number; and continuing to copy valid
tracks from source strides having valid tracks and next
closest stride numbers in the ordering to the first source
stride until the target stride is full.

14. The computer program product of claim 11, wherein
the stride numbers in the ordering comprise sequential
numbers, and wherein upon reaching a last stride number in
the ordering, a next stride number to consider comprises a
first stride number in the ordering.

15. The computer program product of claim 6, wherein
the operations further comprise:

determining one of the tracks in one of the strides in the
second cache to demote from the second cache;

demoting the determined track to demote from the second
cache;

invalidating the determined track to demote in the second
cache; and

incrementing a number of free strides in response to
determining that the stride including the invalidated
track has no valid tracks.

16. The computer program product of claim 6, wherein
the first cache is a faster access device than the second cache
and wherein the second cache is a faster access device than
the storage devices.

17. The computer program product of claim 6, wherein
the first cache comprises a Dynamic Random Access
Memory (RAM), the second cache comprises a plurality of
flash devices, and the storage system is comprised of a
plurality of slower access devices than the flash devices.

18. A system in communication with a storage system,
comprising:

a processor;

a first cache accessible to the processor;

a second cache having multiple storage devices for storing

tracks of data accessible to the processor;
a non-transitory computer readable storage medium hav-
ing computer readable program code embodied therein
executed by the processor to perform operations, the
operations comprising:
maintaining information on strides configured in the
second cache, wherein a stride has at least one of
valid tracks and free tracks not including valid data,
wherein the strides comprise data strides populated
with tracks of data, wherein the strides configured in
the second cache are comprised of tracks grouped as
defined by a configuration of the storage system,
wherein the strides of tracks formed in the second
cache are striped in the storage system, and wherein
the second cache caches tracks stored in the storage
system,

determining tracks to demote from the first cache;

forming a first stride including the determined tracks to
demote;

adding the tracks from the first stride to a second stride
in the second cache that has no valid tracks;

US 9,471,496 B2

17

selecting a target stride in the second cache based, on
a stride most recently used, to consolidate strides
from at least two source strides in the second cache
into the target stride; and

copying data from the valid tracks from the at least two
source strides in the second cache to the target stride.

19. The system of claim 18, wherein the operations further
comprise;

maintaining indication of a number of free strides having

no valid tracks;

determining whether the number of free strides is below

a free stride threshold, wherein the selecting the target
stride and copying the data from the valid tracks from
the at least two source strides is performed in response
to determining that the number of free strides is below
the free stride threshold; and

invalidating the tracks in the at least two source strides

copied to the target stride.

20. The system of claim 18, wherein each stride is
assigned a stride number that provides an ordering of the
strides, wherein the at least two source strides have stride
numbers immediately following the stride number of the

10

15

20

18

target stride in the ordering and wherein the at least two
source strides have sufficient valid tracks to fill the target
stride.

21. The system of claim 18, wherein each of the strides is
assigned a stride number that provides an ordering of the
strides, further comprising:

selecting for the second stride an empty stride having a

next closest stride number in the ordering to the stride
to which tracks from the first cache were most recently
written.

22. The system of claim 18, wherein the operations further
comprise:

determining one of the tracks in one of the strides in the

second cache to demote from the second cache;
demoting the determined track to demote from the second
cache;

invalidating the determined track to demote in the second

cache; and

incrementing a number of free strides in response to

determining that the stride including the invalidated
track has no valid tracks.

#* #* #* #* #*

